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INTRODUCTION

In 1947, with the formation of the US Air Force as a separate branch of
service, US Army aviation relinquished most of its high-altituwle capabil-

4 ities, requirements, and aircraft, resulting in a role of reduced importance
for oxygen delivery systems in the Army aviation environment. Today, however,
there are increased mission requirements, both training and operational, which
dictate routine flights in certain aircraft to altitudes as high as 7,620
meters (25,000 feet) in an unpressurized cabin. As a result, oxygen systems
are again a critical part of US Army aircraft life support systems. Cur-

4,• rently, US Army aviation oxygen needs are satisfied only partially by
continuous flow and diluter demand gaseous oxygen systems due to space,

P weight, and logistical limits. Additionally, the effectiveness of these
systems is compromised by several factors. The amount of oxygen available
during a given flight is limited by the number of high-pressure cylinders
carried on board the aircraft. Carrying extra cylinders results in a weight
and space penalty which reduces operational aircraft cipability. Gaseous
systems require frequent refilling which prolongs aircraft turnaround time.

-There also are high risk safety hazards associated with the storage, servicing,
and use of high pressure gaseous oxygen systems; and logistical servicing
facilities are not normally available at remote locations.

The logistical problems associated with using high pressure gaseous oxygen
systems have encouraged the development of molecular sieve oxygen concentra-
tion systems for use on board aircraft. The US Army, Navy, and Air Force
are studying the applicability of these systems for use on high performance

4 jet aircraft, turbopropeller aircraft, and turbine-powered helicopters
(Ernsting et al., 1980; Knox et al., 1981; Miller et al., 1980; and PettyjohnI et al., 1977).

A typical concentrator contains two can'iisters or "beds" filled with a

synthetic zeolite molecular sieve material of five Angstrom pore size.
These two beds are pressurized alternately with bleed air diverted from the
compressor stage of the turbine engine. During pressurization, oxygen in the
bleed air is separated from nitrogen and then vented through the output port.
Nitrogen is trapped in the zeolite molecular sieve material. The bed then is
depressurized to the atmosphere as a nitrogen exhaust purge which completes
the unit's "pressure swing cycle." During this phase of the cycle, some of
the concentrated oxygen from the pressurized bed is bled in the reverse di-
rection through the depressurized bed to assist in the nitrogen purge. Thus,
when one bed is ccncentrating oxygen, the other is being purged of nitrogen.
A rotary valve directs the flow of bleed air and also controls the flow of
oxygen-enriched air and nitrogen purge. The valve is actuated by a 28-volt DC
motor that is powered by the aircraft electrical system. A block diagram of
this process is shown as Figure 1. This report summarizes the in-fliCht static

performance characteristics of two such oxygen concentrators installed in a

4
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JU-21G fixed-wing, twin-engine, turbopropeller aircraft (Figure 2) and a JUH-lH

turbine-powered helicopter (Figure 3). Such an effort is a necessary first
step for evaluation of candidate systems within the range of physiological re-
quirements.

METHOD

APPARATUS

Two oxygen concentrators were tested, one manufactured by the Garrett
% Corporation* and the other by the Bendix Corporation* (Figure 4). Each unit

occupies approximately one cubic foot and operates by basically the same
method.

In the JU-21G, instrumentation for n-flight testing and data collection
was installed in a specially-built test stand (Figure 5). Bleed air from the
right engine at 15 to 55 pounds per square inch gauge (psig) was fed into
the test stand through a 15.78mm (5/8-inch) internal diameter (ID) oxygen line.
A 4.5-liter plenum chamber was installed to facilitate instrumentation and
dampen pressure fluctuations caused by the pressure swing of the molecular
sieve concentrator. Inlet bleed air pressure was measured by a Validyne
differential pressure transducer* and a Harris sight gauge.* Temperature was
measured with a Cole-Palmer digital thermometer* before the air was directed
from the plenum chamber through the oxygen concentrator. The oxygen-enriched
air (product gas) exited the concentrator and passed into a second 4.5-liter
plenum chamber where the outlet pressure and temperature again were monitored
and recorded using another Validyne differential pressure transducer, Harris
sight gauge, and Cole-Palmer digital thermometer. Upon exiting the outlet
plenum, the product gas was fed through a 9.5mm (3/8-inch) ID oxygen line to
a Technology, Incorporated mass flow meter.* A shutoff valve, in conjunction
with a Fischer-Porter rotameter*, was used to set various flows. Oxygen con-
centration was measured using a fast response Beckman OM-14 oxygen analyzer*
equipped with an altitude sensor. A Wallace and Tiernan barometer* was used
to measure ambient barometric pressures. Standard aircraft instrumentation was
used for torque, engine temperature, airspeed, and altitude measurements.
Calibration of instrumentation was maintained on a flight-by-flight basis at
both ground level and at the various sampling altitudes.

The same instrumentation package was used for testing in the JUH-lH with
the only difference being a slight modification of the test stand to allow for
proper securing of the stand to the helicopter's cargo attachment points.

*Indicates product manufacturer listed in Appendix A.
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PROCEDURE

In the JU-21G, five separate flights at altitudes of 1,524, 3,048, 4,572,
6,096, and 7,620 meters (5,000, 10,000 15,000, 20,000, and 25,000 feet) were
conducted with each oxygen concentration unit. Four different flows of 15,
25, 35, and 70 liters per minute were chosen to represent normal breathing
requirements for one- and two-man crews. Data were recorded for each flow at
all altitudes and at both minimum and maximum engine power settings. Minimum

... power was defined as the power required to fly at 130 knots indicated airspeed
(IAS) while maximum power was defined as 208 knots IAS with Interstage Turbine
Temperature -(ITT) not to exceed 7050 C. At these power settings, the inlet
bleed air pressures at the oxygen concentrator were consistently in the range
of 28 to 55 psig and oxygen-enriched air outlet pressure ranged from 22 to 28
psig, which is well within the limits of the low pressure oxygen regulators
designed for use with molecular sieve oxygen concentration units. In the
JUH-lH, five separate flights at altitudes of 1,524, 3,048, and 4,572 meters
(5,000, 10,000, and 15,000 feet) were conducted with each oxygen concentration
unit. Flow rates were the same as in the JU-21G, and the engine power setting
was constant over the entire flight test period.

RESULTS

Oxygen concentrations and other system considerations for the JU-21G
flights are shown for the Bendix unit in Table I and for the Garrett unit in
Table 2. Oxygen concentration and system data for the JUH-lH flights are
shown in Table 3 for the Bendix unit and in Table 4 for the Garrett unit.
Generally, with both units, oxygen concentration decreased with increased
flow and increased with higher altitude. In the JU-21G, oxygen concentration
generally decreased with the higher engine power setting. However, with the
Bendix unit, this condition was reversed in some instances. In all cases, as
shown in Figures 6 through 11, oxygen concentration met or exceeded the re-
quirements (indicated by the stippled area) of MIIL-R-83178.

Data first recorded upon reaching a new altitude (low flows, Figures 6-9)
often showed overlap where it was supposed there should be none. A careful
review of data collection procedures revealed that it usually took 4 to 6
minutes for the system to stabilize and be repeatable. In order to test the
working hypothesis that the initial readings in Figures 6 through 9 were taken
prior to system equilibrium, data were recorded during three additional flights
in the JU-21G at each altitude, allowing more time between flow changes and
altitude changes for the system to stabilize. The data for the Garrett unit
Is presented in Table 5 and Figures 12 and 13 for these additional flights.
Two low-altitude flights were made with the Bendix unit when the aircraft

11
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suffered a lightning strike. The aircraft main electrical inverters malfunc-
tioned and the motor in the Bendix On-Board Oxygen Generating System (OBOGS)
unit would not operate in the laboratory after the flight. The unit is being
repaired. No additional data for the Bendix unit is reported.

Other aircraft flight parameters which were recorded, but not included in
this report were engine torque and ITT or exhaust gas temperature. There was
no noticeable difference in the instrumentation readings nor could the pilots
"feel" when the concentrators were being driven by bleed air.

DISCUSSION

4raStatic testing of the molecular sieve concept of onboard oxygen concen-
tration systems for the Army aircraft is a necessary first step to insure their
physiological adequacy. Although each unit met or exceeded the requirements
of MIL-R-83178, the results obtained in the JUH-lH helicopter differed from
those obtained in the JU-21G fixed-wing aircraft. A comparison of these
results shows that the Garrett unit performed similarly in both aircraft when
the JU-21G was at maximum power. The Bendix unit, however, in some instances,
produced a lower oxygen concentration in the JUH-lH than in the JU-21G. A
comparison of these data with the data in Table I of Ernsting et al. (1980)
reveals that operation of these units in flight produces oxygen concentrations
slightly hiqher with the Garrett unit and slightly lower with the Bendix unit
than the respective values obtained during tests in the hypobaric chamber.

The oxygen concentration process of the molecular sieve depends on many
factors including flow, inlet temperature, inlet pressure, and the pressure
differential across the molecular sieve bed. Additionally, although the cause
has not been definitely determined, the resistance of the nitrogen exhaust
purge hose seems to be a factor and attention should be directed to the design
of an exhaust port to maximize oxygen concentration. The differences in
oxygen concentration reported here and those reported by Ernsting are probably
a result of differences in all of these factors. One notable difference in
test procedures was our use of heated engine bleed air instead of unheated
laboratory instrument air as used in Ernsting's hypobaric chamber tests. Both
units have internal pressure regulators which limit the inlet pressure to
between 25 and 28 psig. This effectively eliminates the effect of bleed air
pressure changes that might result from differing engine power settings since
even minimum engine power settings produce bleed air pressurp in excess of 25
psig.

The use of engine bleed air to drive the oxygen concentrators produced no
noticeable effect on aircraft performance.

During the upcoming toxicology phase of this project, in which tests
will be conducted to determine whether or not any harmful substances from
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bleed air exhaust are passed through the molecular sieve, the noted varia-
bles will be studied more closely and an attempt will be made to optimize
them for maximum oxygen production.

The results in Table 5 and Figures 12 and 13 confirm the hypothesis that
some early readings were taken prior to system equilibrium. This means that
the first set of data is slightly more conservative in stating oxygen output
at low flows and at the lower altitudes.

The primary objective of the study was to assess the physiological ade-
-quacy-of these molecular sieve oxygen concentration units in order to qualify

hem for human use so that dynamic-human interface can be studied in flight.
- The results obtained indicate that both units generate enough oxygen to sup-

port two human subjects in a dynamic breathing study. There is a possibility
that two aviators under high workload conditions (e.g. Night NOE with NVG)
would require minute volumes greater than these systems can produce.

CONCLUSIONS

Oxygen production by each of the molecular sieve oxygen concentrators
studied met or exceeded the requ-rements of t1IL-R-83178 at all flows and
altitudes. Both units have showo themselves capable of producing the oxygen
required at normal minute volumes for a one- or two-man crew on the JUH-1H and
JU-21G aircraft. However, in cases .4here no air mix is allowed and the aviators
are under high stress, it would be possible for two aviators to attempt to over
breathe the system. Prior to initial human interface studies, however, it will
be necessary to complete product gas toxicology tests to insure that contami-
nants from aircraft engine bleed Jir are not passed through the concentrators
in harmful amounts.
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EQUIPMENT AND MANUFACTURER LIST

Molecular Sieve Oxygen Generator
4odel 2202490-1 -1
Serial #49-Rl
AiResearch Mfg Co. of California
Garrett Corporation'K . Validyne Differential Pressure

- .Transducer
1914 Londelius Street
Northridge, California 91324

Technology Incorporated, Mass
Flow Meter

Dayton, Ohio 45431

Harris Pressure Gauge
Mlelbourne, Florida 32901

Wallace and Tiernan Barometer
Belleville, New Jersey 07109

Molecular Sieve Oxygen Concentrator
Model 99251-3261009-0105
Serial #90801 5E

*Bendix Instruments and Life Support
Division

Davenport, Iowa 52802

Beckman OM-14 Oxygen Analyzer
2500 Harbor BoulevardFullerton, California 92634

Cole-Palmer Digital ThermometerChicago, Illinois 60648

Fischer-Porter Rotameter
Warminister, Pennsylvania 18974

*Now known as Clifton Precision
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